HER3 as biomarker and therapeutic target in pancreatic cancer: new insights in pertuzumab therapy in preclinical models
نویسندگان
چکیده
The anti-HER2 antibody pertuzumab inhibits HER2 dimerization and affects HER2/HER3 dimer formation and signaling. As HER3 and its ligand neuregulin are implicated in pancreatic tumorigenesis, we investigated whether HER3 expression could be a predictive biomarker of pertuzumab efficacy in HER2low-expressing pancreatic cancer. We correlated in vitro and in vivo HER3 expression and neuregulin dependency with the inhibitory effect of pertuzumab on cell viability and tumor progression. HER3 knockdown in BxPC-3 cells led to resistance to pertuzumab therapy. Pertuzumab treatment of HER3-expressing pancreatic cancer cells increased HER3 at the cell membrane, whereas the anti-HER3 monoclonal antibody 9F7-F11 down-regulated it. Both antibodies blocked HER3 and AKT phosphorylation and inhibited HER2/HER3 heterodimerization but affected differently HER2 and HER3 homodimers. The pertuzumab/9F7-F11 combination enhanced tumor inhibition and the median survival time in mice xenografted with HER3-expressing pancreatic cancer cells. Finally, HER2 and HER3 were co-expressed in 11% and HER3 alone in 27% of the 45 pancreatic ductal adenocarcinomas analyzed by immunohistochemistry. HER3 is essential for pertuzumab efficacy in HER2low-expressing pancreatic cancer and HER3 expression might be a predictive biomarker of pertuzumab efficacy in such cancers. Further studies in clinical samples are required to confirm these findings and the interest of combining anti-HER2 and anti-HER3 therapeutic antibodies.
منابع مشابه
Molecular pathways: HER3 targeted therapy.
The HER family of receptor tyrosine kinases, including EGF receptor (EGFR), HER2, HER3, and HER4, transduce growth-promoting signals in response to ligand binding to their extracellular domains (ECD). This family is deregulated in numerous cancers, with mutations in EGFR and HER2 often serving as "driver" events to activate key growth factor signaling pathways such as the RAS-ERK and PI3K-AKT p...
متن کاملMolecular Pathways Molecular Pathways: HER3 Targeted Therapy
The HER family of receptor tyrosine kinases, including EGF receptor (EGFR), HER2, HER3, and HER4, transduce growth-promoting signals in response to ligand binding to their extracellular domains (ECD). This family is deregulated in numerous cancers, withmutations in EGFR andHER2 often serving as "driver" events to activate key growth factor signaling pathways such as the RAS-ERK and PI3K-AKT pat...
متن کاملMonoclonal Antibody Production Against Vimentin by Whole Cell Immunization in a Mouse Model
Background: Pancreatic carcinoma is the fourth-leading cause of cancer death in the United States and due to its late presentation, only few patients would be candidates for the curative treatment of pancreactomy. Monoclonal antibodies have brought hope to targeted therapy.Objectives: To identify new biomarkers, a panel of monoclonal antibodies was genera...
متن کاملModulation of HER3 is a marker of dynamic cell signaling in ovarian cancer: implications for pertuzumab sensitivity.
This study was designed to evaluate the expression of HER receptors as a marker of sensitivity to the humanized anti-HER2 monoclonal antibody pertuzumab in ovarian cancer cells. In a recent clinical trial, low levels of HER3 mRNA have been shown to associate with pertuzumab response when combined with gemcitabine. We sought to define how pertuzumab modulated HER expression levels in ovarian can...
متن کاملDirect estrogen receptor (ER) / HER family crosstalk mediating sensitivity to lumretuzumab and pertuzumab in ER+ breast cancer
Bidirectional cross talk between members of the human epidermal growth factor family of receptors (HER) and the estrogen receptor (ER) is believed to underlie resistance mechanisms that develop in response to treatment with anti-HER agents and endocrine therapy. We investigated the interaction between HER2, HER3 and the ER in vitro using human embryonic kidney cells transfected with human HER2,...
متن کامل